Fast implementation for semidefinite programs with positive matrix completion
نویسندگان
چکیده
Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the inverse of the variable matrix to enhance the performance of the MC-PDIPM. We also combine multithreaded parallel computing to resolve the major bottlenecks in the MC-PDIPM. The numerical results show that the new factorization and the multithreaded computing successfully reduce the computation time for the SDPs that posses the structural sparsity.
منابع مشابه
Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework
A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...
متن کاملExploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results
In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a ...
متن کاملImplementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones
We describe an implementation of nonsymmetric interior-point methods for linear cone programs defined by two types of matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern and its dual cone, the cone of chordal sparse matrices that have a positive semidefinite completion. The implementation takes advantage of fast recursive algorithms for evaluating the ...
متن کاملA parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion
A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of its coefficient matrix. SD...
متن کاملParallel Primal-dual Interior-point Methods for Semidefinite Programs B-415 Parallel Primal-dual Interior-point Methods for Semidefinite Programs
The Semidefinite Program (SDP) is a fundamental problem in mathematical programming. It covers a wide range of applications, such as combinatorial optimization, control theory, polynomial optimization, and quantum chemistry. Solving extremely large-scale SDPs which could not be solved before is a significant work to open up a new vista of future applications of SDPs. Our two software packages S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Methods and Software
دوره 30 شماره
صفحات -
تاریخ انتشار 2015